Abstract
Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG) mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23), allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.
Highlights
NOD-Prkds IL2rg (NSG) mice combine a severe immune deficiency mutation [SCID] and IL-2 receptor y-chain deficiency
Intravital fluorescence microscopy made it possible to study in vivo the microvasculature in striated muscle and bone
The vessel diameter was significantly lower in the dorsal skinfold chamber than in the femur window (7 days, p < 0.01; 14 days, p = 0.01; 21 days, p < 0.01; 28 days, p = 0.01) (Fig 3b)
Summary
We aimed to present the first comparative characterization of the microcirculatory properties of bone and striated muscle in NSG mice over a period of 28 days. We aimed to compare the NSG mouse strain to other mouse strains in terms of microhemodynamic parameters
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have