Abstract

Previous studies in tissue engineering have shown that suspending undifferentiated mesenchymal stem cells in collagen gels and wrapping them about a suture causes alignment of cells and contraction of constructs in culture in a form that is suitable for implantation for tendon repair. Little is known about the patterns of these in vivo signals that might improve tendon repair biomechanics. Three hypotheses were tested in this study using the rabbit patellar tendon (PT) model: (1) peak in vivo forces and the rates of rise and fall in these forces will increase significantly with increasing levels of activity; (2) the PTs safety factor for all activities will be in the range of values found for tendons (2.5–3); (3) rabbits will not “favor” the operated limb at the time of evaluation but maintain similar vertical ground reaction forces in both limbs during quiet standing (QS). In vivo rabbit PT forces were measured during QS and while the animal hopped on a treadmill whose speed (0.04 and 0.13 m/s) and inclination (0° and 12°) were controlled. Implantable force transducers were surgically placed in one PT and data collected three days post surgery in each of eight New Zealand White rabbits. Peak tensile forces increased significantly with inclination of the treadmill and the rates of rise and fall in tendon force increased significantly with both speed and inclination ( p<0.001). Such design criteria should be useful in mechanically stimulating cell-gel constructs for tendon repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.