Abstract

In the Pseudomonas aeruginosa-induced rodent pneumonia model, it is thought that free radicals are significantly associated with the disease pathogenesis. However, until now there has been no direct evidence of free radical generation in vivo. Here we used electron spin resonance (ESR) and in vivo spin trapping with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone to investigate free radical production in a murine model. We detected and identified generation of lipid-derived free radicals in vivo (aN =14.86±0.03 G and aHβ =2.48±0.09 G). To further investigate the mechanism of lipid radical production, we used modulating agents and knockout mice. We found that with GdCl3 (phagocytic toxicant), NADPH-oxidase knockout mice (Nox2−/−), allopurinol (xanthine-oxidase inhibitor) and Desferal (metal chelator), generation of lipid radicals was decreased; histopathological and biological markers of acute lung injury were noticeably improved. Our study demonstrates that lipid-derived free radical formation is mediated by NADPH-oxidase and xanthine-oxidase activation and that metal-catalysed hydroxyl radical-like species play important roles in lung injury caused by Pseudomonas aeruginosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.