Abstract

This study was based on in vivo assessment of bone regeneration capacity of synthesized porous β-tricalcium phosphate (β-TCP) nanocomposite granules and aimed to explore the effects of fabricated β-TCP granules reinforced with layered double hydroxides (LDH) nanoclay compared to β-TCP granules, in terms of osteoconductivity and biodegradability. Granules with diameters of 2-3 mm were implanted into cavities drilled in rabbit distal femur and were left in situ for up to 3months. The mechanical study demonstrated that the presence of LDH nanoparticles in β-TCP granules resulted in a significant increase in compressive modulus from 174.4 to 231.4MPa, while the porosity was constant at 76%-80%. The results revealed that the obtained granules showed no cytotoxicity. In this study, x-ray radiographic, micro-computed tomography, and histological staining analysis were taken to evaluate the percentage of bone ingrowth and biodegradability of the porous granules. The results exhibited that both granules support bone regeneration and also the amount of new bone formation in the bone defect filled with both granules was almost six times higher than the empty defects. Although no significant difference in bone formation for two different granules was observed, a higher biodegradability was detected in β-TCP granules in comparison to β-TCP/LDH granules. Overall, the addition of LDH nanoclay (10%) enhanced the physicochemical and mechanical properties of β-TCP granules while it is biological and osteoconductity properties have been maintained and its biodegradation rate has been decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.