Abstract

Burkholderia pseudomallei is the causative agent of melioidosis, a severe infection prominent in northern Australia and Southeast Asia. The “gold standard” for melioidosis diagnosis is bacterial isolation, which takes several days to complete. The resulting delay in diagnosis leads to delayed treatments, which could result in death. In an attempt to develop better methods for early diagnosis of melioidosis, B. pseudomallei capsular polysaccharide (CPS) was identified as an important diagnostic biomarker. A rapid lateral flow immunoassay utilizing CPS-specific monoclonal antibody was developed and tested in endemic regions worldwide. However, the in vivo fate and clearance of CPS has never been thoroughly investigated. Here, we injected mice with purified CPS intravenously and determined CPS concentrations in serum, urine, and major organs at various intervals. The results indicate that CPS is predominantly eliminated through urine and no CPS accumulation occurs in the major organs. Immunoblot analysis demonstrated that intact CPS was excreted through urine. To understand how a large molecule like CPS was eliminated without degradation, a 3-dimenational structure of CPS was modeled. The predicted CPS structure has a rod-like shape with a small diameter that could allow it to flow through the glomerulus of the kidney. CPS clearance was determined using exponential decay models and the corrected Akaike Information Criterion. The results show that CPS has a relatively short serum half-life of 2.9 to 4.4 hours. Therefore, the presence of CPS in the serum and/or urine suggests active melioidosis infection and provides a marker to monitor treatment of melioidosis.

Highlights

  • Burkholderia pseudomallei is a Gram-negative, soil-dwelling bacillus and the etiologic pathogen of melioidosis, a severe infection endemic in tropical areas with the highest incidence in Southeast Asia and northern Australia [1]

  • Capsular polysaccharide (CPS), is a virulence factor expressed by many Gram-negative bacteria including Burkholderia pseudomallei, the causative agent of melioidosis

  • B. pseudomallei capsular polysaccharide (CPS) was identified as a useful diagnostic biomarker, leading to the development of a lateral flow immunoassay (LFI)

Read more

Summary

Introduction

Burkholderia pseudomallei is a Gram-negative, soil-dwelling bacillus and the etiologic pathogen of melioidosis, a severe infection endemic in tropical areas with the highest incidence in Southeast Asia and northern Australia [1]. In early 2016, it was predicted that approximately 165,000 individuals worldwide would suffer from melioidosis, while 89,000 of them would die from the infection [2]. B. pseudomallei has been acknowledged as a potential agent of biological warfare and terrorism because of its ability to cause severe disease via airborne transmission [3,4]. Due to the possibly significant impact on public health and the inherent potential for misuse, the Centers for Disease Control and Prevention (CDC) has classified this organism as a Tier 1 select agent [5]. There is no licensed vaccine available to prevent the infection. Since B. pseudomallei is resistant to common antibiotics, the success of melioidosis treatment greatly relies on rapid point-of-care diagnosis [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call