Abstract
Vibrio vulnificus produces a severe septic shock syndrome in susceptible individuals. Virulence of the bacterium has been closely linked to the presence of a surface-exposed acidic capsular polysaccharide (CPS). To investigate whether CPS plays an additional role in pathogenesis by modulating inflammatory-associated cytokine production, studies were initiated in a mouse model and followed by investigations of cytokine release from human peripheral blood mononuclear cells (PBMCs). Mouse tumor necrosis factor alpha (TNF-alpha) could be detected in serum up to 12 h postinoculation in animals challenged with the encapsulated parent strain MO6-24/O. The unencapsulated strain CVD752 was quickly eliminated by the animals, thus preventing a direct association between serum TNF-alpha levels and the presence or absence of the CPS. Purified CPS from MO6-24/O when injected into D-galactosamine-sensitized mice was a more immediate inducer of TNF-alpha than an equivalent quantity of MO6-24/O lipopolysaccharide (LPS). Both V. vulnificus CPS and V. vulnificus LPS induced inflammation-associated cytokine responses from primary human PBMCs in vitro. CPS elicited TNF-alpha from PBMCs in a dose-dependent manner, with maximal induction at 6 to 10 h, and was not inhibited by polymyxin B. Expression of interleukin-6 (IL-6) mRNAs was also induced in the presence of CPS. Interestingly, while adherent PBMCs secreted high levels of TNF-alpha after stimulation with LPS, they secreted little TNF-alpha in response to CPS. These studies provide evidence that V. vulnificus CPS directly stimulates the expression and secretion of proinflammatory cytokines by murine and human cells and suggest that CPS activation of PBMCs operates through a cellular mechanism distinct from that of LPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.