Abstract

Polymeric biohybrid networks have significant potential as supportive materials for soft connective tissue regeneration. Their success in this regard is determined by their initial mechanical properties, which are dependent on their water content, as well as the rate at which these properties change with time due to cell mediated degradation. In this study the in vivo degradation and tissue response following implantation of matrix metalloproteinase (MMP)-degradable poly(trimethylene carbonate) (PTMC)-based biohybrid networks were assessed in a Wistar rat model. The networks examined varied in equilibrium water content from circa 20% to 70% w/w. The networks degraded through MMP secretion by inflammatory cells at the tissue-material interface, generating a mass loss profile consistent with surface erosion but modulus and sol content changes consistent with a bulk erosion process. This degradation profile was explained in terms of a population gradient in MMP concentration from the surface to the bulk of the networks due to diffusion restrictions. A histological analysis of the tissue surrounding the implants confirmed a moderate tissue response comparable to that observed towards a VicrylTM suture, suggesting that these new materials can be considered biocompatible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call