Abstract

Since the bioresorption process has a strong impact not only on the mechanical properties of the biomaterial but also on the extent of tissue regeneration, in vivo biodegradation of absorbable porous biomaterials plays a key role in tissue repair and wound healing. In the present work, porous silk fibroin films (PSFFs) were prepared by a freeze-drying method and then implanted beneath the dorsal skin and the femoral skeletal muscle of the rat. The objective was to study the rate of biodegradation of the PSFFs in different tissues, each with its distinct metabolic rate. In addition we examined the relationship between the biodegradation rate and tissue-regeneration rate semi-quantitatively by incorporating histology, microscopy and image analysis methods. Furthermore, based on our previous findings, we also explored the relationship between in vitro and in vivo rates of biodegradation. The results suggest that the PSFFs experience a similar biodegradation process regardless of the type of tissue in which they are implanted, in spite of the higher metabolic rate of the skeletal muscle. In addition, the in vitro biodegradation rate of the PSFFs was comparable to that of both skin and skeletal muscle, suggesting that an in vitro biodegradation test could be used to predict in vivo performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.