Abstract

Polymethylmethacrylate (PMMA) bone cement serves as the primary fixation material between bone and the prosthetic component in cemented total hip arthroplasty. In vivo degradation of bone cement may lead to a decrease in mechanical properties of PMMA and result in aseptic loosening. However, other factors such as porosity and location of the cement relative to the bone implant interface may also contribute to mechanical behavior in vivo. This study investigated the mechanical properties of Simplex ® cement retrieved from 43 patients undergoing revision total hip arthroplasty. The time in vivo was between 1 month and 27 years. The variables studied included fracture toughness ( K IC), porosity, molecular weight, time in vivo of the cement, and relative in vivo location of the cement with respect to the implant and bone. K IC did not correlate with time in vivo of the samples or with molecular weight. This suggests that time in vivo may not be the limiting factor in the mechanical integrity of the bone cement, A significant and inverse relationship was found between porosity and K IC. This implies that porosity is the most important factor in the mechanical behavior of bone cement during in vivo use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.