Abstract

The present study challenges the in vivo assessment of cold atmospheric pressure plasma (CAPP) technology on the bioactive activity (antioxidant/antiaging and antimicrobial potential) of Spirulina powder, using Caenorhabditis elegans as an animal model. Surface microdischarge cold atmospheric pressure plasma (SMD-CAPP) treatment was 3.3 W discharge power for 7 min. C. elegans lifespan and egg laying were used as indicators of antioxidant/antiaging potential of Spirulina (1 mg/mL), when grown with Spirulina CP-treated [E_SCP] and untreated [E_S], compared with a control [E_0] (non-supplemented with Spirulina). According to our results, under both Spirulina supplemented media [E_SCP and E_S] and for the first 17 days, nematodes experienced an increase in lifespan but without significant differences (p > 0.05) between control and Spirulina CP-treated. Regarding the in vivo assay of the antimicrobial potential of Spirulina against Salmonella enterica serovar Typhimurium (infected worms), no significant differences (p > 0.05) were found between the three exposure scenarios (control [S_0]; Spirulina supplemented media [S_S]; CP-treated Spirulina supplemented media [S_SCP]). According to present results, CAPP-treatment do not influence negatively the lifespan of C. elegans but a reduction in the Spirulina antiaging potential was found. No in vivo modifications in antimicrobial activity seem to be linked to CAPP-processed Spirulina.

Highlights

  • In recent years, there has been a steady growth of scientific interest in blue green microalgae Arthospira platensis, hereafter referred to as Spirulina, as a sustainable source of proteins and other high-value compounds with physiological properties (Ozdemir et al, 2004; Khan et al, 2005, 2006; Nuhu, 2013)

  • Radio-frequency, microwaves, thermal energy, electric and magnetic fields [plasma jet, surface microdischarge plasma (SMD), dielectric barrier discharge plasma (DBD)] are used as energy sources for gas ignition, with the generated plasma being comprised by ions, free electrons, radicals, and electromagnetic radiation (Tolouie et al, 2018)

  • In the case of the nematode population exposed to Spirulina [E_S] and [E_SCP], lower nematode death rates per time interval compared to control samples appear, probably due to a protective antiaging effect due to Spirulina exposure, regardless of whether the Spirulina had been treated with cold plasma [E_SCP] or not [E_S]

Read more

Summary

Introduction

There has been a steady growth of scientific interest in blue green microalgae Arthospira platensis, hereafter referred to as Spirulina, as a sustainable source of proteins and other high-value compounds with physiological properties (Ozdemir et al, 2004; Khan et al, 2005, 2006; Nuhu, 2013). Recent trends are moving toward more efficient, environmentally friendly, and very rapid non-thermal treatments (ranging from a few seconds to a few minutes), implemented in the food and pharmaceutical industries to inactivate pathogenic bacteria, while preserving the techno-functional product properties intact (flavor, color, texture, solubility) as well as the beneficial bioactive potential in the end product Among these novel processes, cold plasma (CP) is emerging as a non-thermal technology, with huge versatility to treat solid, liquid and powder-based matrices, proving effective in the inactivation of spores, viruses, mycotoxins and prions (Elmoualij et al, 2012; ten Bosch et al, 2017; Beyrer et al, 2020; Pina-Pérez et al, 2020). The continuous generation of electrical microdischarges is the most efficient method of choice to generate cold plasma (temperature 30–40◦C) (Pina-Pérez et al, 2020)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call