Abstract

Ethnopharmacological relevancePostmenopausal osteoporosis is a major bone health issue worldwide. There is an unmet medical need for osteoporosis treatments, a disease which disproportionately impacts women. Exploring botanicals to prevent or treat osteoporosis is currently an interest of investigations. Rhizomes of Davallia mariesii T. Moore ex Baker (Davalliacea) are used an indigenous herbal medicine in Asia for injuries due to fractures, contusions, and strains. Aim of the studyIn the present study, we investigated the osteogenic effect of the water extract of rhizomes of D. mariesii (DMH) on bone loss induced by an ovariectomy (OVX) in mice and also its impact on osteogenesis in primary human osteoblasts (HObs). Additionally, we performed a quantitative analysis of compounds in the DMH extract. Materials and methodsOVX C57BL/6J mice were orally administrated DMH extract for 12 weeks, and microarchitecture parameters were examined by microcomputed tomography. DMH extract was fractionated in a bio-guided manner, and fractions were isolated to obtain active compounds using HObs. Cell viability was evaluated by an MTT assay. Characteristics of early and late osteogenesis were analyzed by alkaline phosphatase activity and a mineralization assay. Molecular mechanisms were explored by a real-time quantitative PCR. Compounds in the DMH extract were identified and quantified using liquid chromatography tandem mass spectroscopy (LC-MS/MS). ResultsDMH improved bone mineral densities of vertebrae and the femur. Through microarchitectural observations, DMH significantly decreased the bone surface/volume ratio and trabecular separation, and also increased the connectivity density in the OVX group. Additionally, DMH inhibited osteoclast differentiation in receptor activator of nuclear factor-κB ligand-induced osteoclasts and increased bone formation in HObs. After bio-guided fractionation and isolation, we found that eriodictyol-7-O-β-d-glucuronide (2) significantly increased alkaline phosphatase activity, and 5-O-β-d-(6-O-vanilloylglucopyranosyl)gentisic acid (3) substantially enhanced mineral deposition. In HObs, compound 3 was more potent in upregulating expressions of bone morphogenetic protein-2, bone sialoprotein, osteopontin, osterix, and estrogen receptor-α. The amount of bioactive compound 3 in DMH was 5.68 ± 0.64 mg/g of dry weight according to LC-MS/MS. ConclusionFor the first time we report that D. mariesii and its isolated compounds demonstrated potent osteogenic activities. Quantitative results of D. mariesii could be a reference for phytochemical analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.