Abstract

This study is focused on in vitro permeation of the original Czech compound, a skin/mucosa tissue regeneration promoter, known under the international nonproprietary name “alaptide,” in micronized and nanonized forms. Alaptide showed a great potential for local applications for treatment and/or regeneration of the injured skin. The above mentioned technological modifications influence the permeation of alaptide through artificial or biological membranes, such as PAMPA or skin. The permeation of micronized and nanonized form of alaptide formulated to various semisolid pharmaceutical compositions through full-thickness pig ear skin using a Franz cell has been investigated in detail. In general, it can be concluded that the nanonized alaptide permeated through the skin less than the micronized form; different observations were made for permeation through the PAMPA system, where the micronized form showed lower permeation than the nanonized alaptide.

Highlights

  • It is known that damage or deficit of skin and mucosa, such as injury, wound, morsus, scald, burn, congelation, radiation injury, ultraviolet irradiation, electric injury, traumatic injury, skin ulcer, bedsore, and bullous skin diseases, causes degenerative exfoliation, necrosis, apoptosis, or apoptosis-like cell death of skin tissue-composing cells or mucosal tissuecomposing cells

  • It can be concluded that the nanonized alaptide permeated through the skin less than the micronized form; different observations were made for permeation through the PAMPA system, where the micronized form showed lower permeation than the nanonized alaptide

  • The preliminary permeability screening of micronized and nanonized alaptide, which was obtained by milling process with glass beads, was performed using polyvinylidene fluoride (PVDF), that is, using PAMPA that has become a very useful and quite cheap tool for predicting intestinal permeability and is well suited as a ranking tool for the assessment of the compounds with passive intestinal transport mechanisms [25,26,27]

Read more

Summary

Introduction

It is known that damage or deficit of skin and mucosa, such as injury, wound, morsus, scald, burn, congelation, radiation injury, ultraviolet irradiation, electric injury, traumatic injury, skin ulcer, bedsore, and bullous skin diseases, causes degenerative exfoliation, necrosis, apoptosis, or apoptosis-like cell death of skin tissue-composing cells or mucosal tissuecomposing cells. (S)-8-Methyl-6,9-diazaspiro[4.5]decan-7,10-dione, known under the international nonproprietary name (INN) “alaptide” (see Figure 1), can be considered as skin/mucosa tissue regeneration promoters. It was designed as an analogue of melanocyte-stimulating hormone release-inhibiting factor (MIF) and synthesized by Kasafirek et al at the Research Institute for Pharmacy and Biochemistry in the 80s of the. Alaptide is a white crystalline compound, generally poorly soluble, stable in the sunlight, and storable at ambient temperature [8, 9] Since it is an optically active molecule, it is necessary to inspect the entire synthetic process with the intention to determine unambiguously the absolute configuration of the final product. Except for the recently published X-ray powder diffraction data revealing the unit cell parameters and the space group of alaptide crystals [11], absolute configuration of the molecule was determined by electronic circular dichroism spectroscopy [12]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call