Abstract

BackgroundThe skin infection caused by Mycobacterium abscessus (M. abscessus) is extremely difficult to treat in clinical practice. PDT (photodynamic therapy) is a promising antibacterial treatment. We evaluated the effect of photodynamic therapy using 5-aminolevulinic acid (ALA) as a photosensitizer on M. abscessus and its antibiotic resistance in this study. MethodsM. abscessus and biofilm were treated with different concentrations of ALA and then irradiated with LED light (635 nm, 80 J/cm2), while there were ALA-only group, light-only group, and negative control group. The effects were observed by colony counting, crystal violet staining, confocal laser scanning microscope (CLSM), and scanning electron microscope (SEM). The changes of drug susceptibility of M. abscessus at sublethal doses were detected by micro-broth dilution method, and the possible mechanism was explored by fluorometer and real-time fluorescence quantitative Polymerase Chain Reaction (RT-qPCR). ResultsALA-PDT showed a significant killing effect on M. abscessus at ALA concentrations greater than 50 μg/ml and the effect increased with increasing photosensitizer concentrations. ALA-PDT also showed a notable scavenging effect on M. abscessus biofilm, which was also enhanced with increasing ALA concentrations. At sublethal doses, the susceptibility of M. abscessus to antibiotics was increased, and ALA-PDT greatly increased the cell wall permeability of M. abscessus and decreased the mRNA expression of drug resistance genes whiB7 and erm (41), as well as efflux pump genes MAB_1409c and MAB_3142c at the transcriptional level. ConclusionsALA-PDT has a significant killing effect on M. abscessus and can increase its antibiotic susceptibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call