Abstract

To construct and screen short hairpin RNA (shRNA) targeting vascular endothelial growth factor (VEGF), and investigate potential values of VEGF-shRNA on angiogenesis and growth in renal cell carcinoma (RCC) in a xenograft tumor model. VEGF-shRNA fragment was designed to connect plasmid vector, and RCC cells were transfected with shRNA. Real-time fluorescent quantitative polymerase chain reaction (RTFQ-PCR) was used to detect interference efficiency of VEGF gene. The xenograft tumor model was established in nude mice, and mice were randomly divided into blank control (BC) group, negative control (NC) group, and experimental group. RNA interference (RNAi) effect was detected by immunohistochemistry, and tumor volume changes were observed. Tumor-bearing nude mice model was established and mice were randomly divided into BC group, NC group, and treatment group. The tumor volume changes and tumor inhibition rate were recorded, and angiogenesis status was observed. The apoptosis of tumor cells and genetic toxicity of VEGF-shRNA were detected. VEGF-shRNA can inhibit VEGF mRNA expression with an inhibition ratio of 72.3%. Compared with NC group and BC group, experimental group presents smaller tumor volume, weight, and poor growth (all p < 0.05). Positive VEGF rate in experimental group is significantly lower than that in NC group and BC group (all p < 0.05). Significantly lower tumor volume, less microvessel density (MVD) value, and higher apoptotic index (AI) are found in treatment group compared with BC group and NC group (all p < 0.05). There was no significant difference in AI between treatment group and BC group regarding adjacent normal tissues (p > 0.05). VEGF plays an important role in the occurrence and development of RCC, chemical synthesis of VEGF small interfering RNA (siRNA) can specifically inhibit VEGF expression, angiogenesis and growth in RCC, and can promote cell apoptosis without genetic toxicity to normal tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call