Abstract

Hypoxia-inducible factor 1α (HIF-1α) is a pivotal regulator of hypoxic and ischaemic vascular responses that drives transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis and arteriogenesis. Previous reports based on gene knockout technology have demonstrated that HIF-1α can promote osteogenesis. However, this protein is easily degraded in a normoxic state, which makes in vitro studies of HIF-1α-induced mesenchymal stem cell (MSC) osteogenesis difficult. For better understanding of HIF-1α promoting osteogenesis, the role of HIF-1α-induced MSC osteogenesis in the normoxic state has been investigated here. HIF-1α was made to overexpress using a lentiviral vector, and its effects on bone marrow-derived mesenchymal stem cell (BMSC) osteogenesis were investigated. Real-time quantitative and western blotting (to assess expression levels of angiogenic and osteogenic related genes regulated by Lenti-HIF-1α), alkaline phosphatase (ALP) and alizarin red-S staining analyses, were performed. In HIF-1α gene-transfected BMSCs, expression levels of angiogenic, cartilaginous and osteogenic genes were all increased significantly compared to Lenti LacZ-transfected cells, at both mRNA and protein levels. ALP activity and alizarin red-S staining were significantly enhanced in HIF-1α transduced cells compared to control cells, on day 21. These results indicate that Lenti-HIF-1α can induce BMSC overexpression levels of angiogenic and osteogenic genes in vitro in the normoxic state. Further study will be focused on whether HIF-1α can also improve bone repair in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.