Abstract

The purpose of this study was to compare the effectiveness of several linear and branch cell-binding peptides to promote cell growth in prosthetic vascular grafts. In this in vitro study, the peptides were covalently immobilized onto expanded polytetrafluoroethylene (ePTFE) vascular grafts. Cell-growth properties were studied using primary human umbilical vein endothelial cells (HUVECs) and primary human umbilical artery smooth muscle cells (HUASMCs). Linear peptides (P15 and P15') and multiple-armed peptides (MAP4-I and MAP4-II) were covalently bonded onto ePTFE grafts by an atmospheric plasma coating method. X-ray photoelectron spectroscopy and amino acid analysis were used to analyze the surface characteristics of the peptide-coated samples. Cell adhesion, proliferation, and morphology were evaluated by culturing HUVECs and HUASMCs onto the surfaces of different samples: ePTFE control, chemically activated ePTFE, P15-coated ePTFE, and MAP4-coated ePTFE. The cell culture experiments were repeated several times to obtain statistically reliable cell-growth data. Cell-growth data were statistically analyzed by the two-way statistical analysis of variance. The study showed that multiple-armed MAP4 peptides were significantly more effective in promoting endothelial cells than the structurally similar linear P15 peptides. There were 800% more HUVECs proliferated on the MAP4-coated ePTFE samples compared with the ePTFE control. MAP4 peptides were 80% more effective for promoting HUVECs than P15 peptides. In contrast, MAP4 peptides were significantly less effective for promoting HUASMCs than HUVECs. There were only about 100% more HUASMCs proliferated on the MAP4-coated ePTFE samples compared with the ePTFE control. MAP4 and P15 peptides had similar cell-promoting characteristics for SMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.