Abstract

The purpose of this study is to evaluate the effectiveness of P15 cell-binding peptide treated ePTFE vascular grafts in vitro and in vivo. The P15 peptide was covalently immobilized onto ePTFE vascular grafts by an atmospheric plasma coating method. In vitro cell growth properties were studied using primary human umbilical vein endothelial cells (HUVECs) and primary human umbilical artery smooth muscle cells (HUASMCs). X-ray photoelectron spectroscopy and aminoacid analysis were used to analyze the surface characteristics of the peptide treated and untreated grafts. The cell growth study showed that the P15 peptide effectively promoted the adhesion and proliferation of endothelial cells. 700% more endothelial cells were proliferated on the P15-treated ePTFE grafts compared to the untreated ePTFE controls. In contrast, the P15 peptide was significantly less effective for promoting the adhesion and proliferation of smooth muscle cells than endothelial cells; only about 100% more smooth muscle cells proliferated on the P15-treated samples compared to the untreated control samples. The sheep model was used in the in vivo study. The amount of neointimal hyperplasia present at the arterial and venous sides of the anastomosis and the degree of endothelialization on the luminal surface of the grafts were assessed. Four P15-treated grafts and two control grafts were implanted as arteriovenous grafts between the femoral artery and vein or the carotid artery and jugular vein in two sheep (n = 6). The in vivo study showed that the thickness of the neointimal hyperplasia of untreated grafts was 3-times thicker than that of P15-treated grafts (P < 0.05) at the venous side of the anastomosis. P15-treated grafts also had a higher degree of endothelialization on the graft lumen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call