Abstract

The binding, internalization, and metabolism of [3H]-heparin by human umbilical vein endothelial cells (HUVEC) and human umbilical arterial smooth muscle cells (HUASMC) have been characterized using size-exclusion HPLC. Incubation of HUVEC with [3H]-heparin demonstrated selective binding of high-molecular-weight (MW) components (MW = 21 kd), which was followed by rapid, temperature-dependent internalization. Over the next 3 hours, this internalized [3H]-heparin was degraded to low-MW fragments (MW = 0.9 kd). Primary cultures of HUASMC selectively bound extremely high-MW components (MW = 40 kd) and also smaller components whose MW (0.9 kd) corresponded to that of the heparin metabolite(s) formed by HUVEC. Subcultured HUASMC bound only the 40-kd components. Internalization of heparin by smooth muscle cells (SMC) was significantly slower than that determined for HUVEC, and even after 4 hours there was no evidence of the heparin being metabolized. However, when incubating primary rabbit aortic SMC with purified low-MW heparin fragment(s) produced in culture by HUVEC, a significantly lower proliferative response of these cells (IC50 = 18.4 micrograms/ml) was obtained. Virtually no effect was observed with subcultured SMC in the range of the tested concentrations (0-20 micrograms/ml). These fragments were 10- to 15-fold more effective in inhibiting primary SMC growth than was standard heparin. Furthermore, heparin fractions in the same range of molecular weights, purified either after nitrous acid or heparinase depolymerization of standard heparin, showed no activity on primary SMC growth, thus indicating a high degree of selectivity of the heparin metabolite(s) produced by HUVEC in culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call