Abstract
Selecting materials and alloys, fabrication methods, surface characteristics and coatings, and topology design, all affect the mechanical properties, biocompatibility, and functionality of dental implants. The success in embedding implants in mouth and improving biocompatibility and consequently useful life of implants depends directly on proper adhesion of tissue to implant surface of a biocompatible alloy. In this research, experimental surface hardness and in vitro tests are carried out on samples with different alloys and different manufacturing methods. Various fabrication techniques, such as machining and 3D printing (Selective laser melting (SLM)), are considered for steel and titanium specimens. Results show that the hardness values of specimens made by the SLM method are higher than machined samples about 8% and also stainless steels samples have higher hardness than titanium specimens. A comparison of scanning electron microscopy (SEM) surface pictures indicates that applying modern fabrication methods for production which includes SLM improves the performance of implants in terms of mechanical and biocompatibility by increasing cell adhesion up to 21 times. In addition, results indicate that titanium alloys have almost 13% higher adhesion property than stainless steel and generally exhibit a higher balance of adhesion and cell growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.