Abstract
Drug-resistant breast cancers such as Triple negative breast cancer (TNBC) do not respond successfully to chemotherapy treatments because they lack the expression of receptor targets. Drug-resistant anti-cancer treatments require innovative approaches to target these cells without relying on the receptors. Intracellular self-assembly of small molecules induced by enzymes is a nanotechnology approach for inhibiting cancer cell growth. In this approach, enzymes will induce the self-assembly of small molecules to nanofibers, which leads to cell death. Here, we investigate the self-assembly of a modified small peptide induced by two different phosphatases: alkaline phosphatase (ALP) and eye absent tyrosine phosphatase (EYA). ALPs are expressed in many adult human tissues and are critical for many cellular functions. EYAs are embryonic enzymes that are over-expressed in drug-resistant breast cancers. We synthesized a small diphenylalanine-based peptide with a tyrosine phosphate end group as the substrate of phosphatase enzymes. Peptides were synthesized with solid phase techniques and were characterized by HPLC and MALDI-TOF. To characterize the self-assembly of peptides exposed to enzymes, different techniques were used such as scattering light intensity, microscopes, and phosphate detection kit. We then determined the toxicity effect of the peptide against normal breast cancer cells, MCF-7, and drug-resistant breast cancer cells, MDA-MB-231. The results showed that the EYA enzyme is able to initiate self-assembly at lower peptide concentration with higher self-assembling intensity compared to ALP. A significant decrease in the TNBC cell number was observed even with a low peptide concentration of 60 μM. These results collectively support the exploration of enzyme self-assembly to treat TNBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.