Abstract
Phosphorylation of rat liver phosphatidylethanolamine (PE) N-methyltransferase by cAMP-dependent protein kinase was investigated. The 18 kDa methyltransferase was found to be phosphorylated in vitro by cAMP-dependent protein kinase on a serine residue. The stoichiometry of phosphate incorporation reached a maximum of 0.25 mol phosphate/mol methyltransferase at 30 min. Resolution of the phosphorylated methyltransferase by two-dimensional gel electrophoresis showed that two isoproteins were substrates. Phosphorylation of the purified PE N-methyltransferase for up to 1 h had no effect on the methylation of PE, PMME or PDME. To test for in vivo phosphorylation, isolated rate hepatocytes were exposed to 0.5 mM N6-2'-O-dibutryladenosine 3':5'-cyclic monophosphate (DiB-cAMP) and the phosphorylation state of microsomal proteins evaluated by two-dimensional gel electrophoresis, nitrocellulose blotting and autoradiography. The same nitrocellulose blots were probed with a rabbit anti-PE N-methyltransferase antibody, immunochemically stained and aligned with the autoradiogram. No phosphorylated proteins co-migrated with the methyltransferase under non-phosphorylating conditions, or when hepatocytes were exposed to the cAMP analogue for up to 2 h. Oddly, DiB-cAMP increased both PE- and PMME-dependent activity in isolated microsomes, but decreased PE to PC conversion measured in intact hepatocytes. The results indicated that PE N-methyltransferase is poorly phosphorylated by cAMP-dependent protein kinase in vitro, and is not phosphorylated in intact hepatocytes treated with a cAMP analogue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.