Abstract

The enniatins are a group of more than 20 cyclic depsipeptides from fungi with numerous biological effects. Enniatin B is commonly one of the principal analogues in species of the genus Fusarium, known to have ionophoric, antibiotic and insecticidal activity. In the present study, enniatin B was incubated with rat, dog and human liver microsomes. The compound was extensively metabolised, and 12 biotransformation products (M1-M12) were detected and their structures tentatively identified using a combination of mass spectrometric techniques and chemical derivatisation. Ion trap mass spectrometry, multiple-stage MS(n) fragmentation and high-resolution mass spectrometry were the instrumental backbone for structural determination, while acetylation, methylation and Jones oxidation were useful derivatisation techniques for the localisation of the site of biotransformation. Comparison of mass spectrometric data of the metabolism products with that of enniatin B suggested that M1-M5 are monohydroxylated species, while M8-M12 are the result of multiple oxidations (oxygenation and dehydrogenation). Metabolites M6 and M7 appeared to be enniatin B homologues and are the result of N-demethylation. Our findings show that oxidation and N-demethylation are the principal metabolic pathways in enniatin B phase I metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.