Abstract

ObjectivesZirconia based restorations exhibited high failure rates due to veneering–porcelain fractures. Milling to full-contour might be an alternative approach for zirconia restorations. The aim of this study was to evaluate full-contour zirconia crowns in terms of light-transmission, contact wear (restoration and antagonist) and load-bearing capacity. Powder build-up veneered zirconia substructures and CAD/CAM-veneered zirconia substructures served as controls. MethodsFour different kinds of crowns were fabricated on 12 metal dies: zirconia substructure with powder build-up porcelain (veneering technique), zirconia substructure with CAD/CAM generated veneering (sintering technique), full-contour zirconia glazed (glazed full-contour) and full-contour zirconia polished (polished full-contour). All crowns had the same dimensions. After light-transmission was measured the crowns were cemented on the corresponding metal dies. The specimens were loaded according to a special wear method in the chewing simulator (120,000 mechanical cycles, 5kg load, 0.7mm sliding movement, 320 thermocycles). Wear of the restoration and the antagonist were measured. All specimens were loaded until failure. One-way ANOVA and a LSD post-hoc test were used to compare data at a level of 5%. ResultsPolished full-contour showed significantly higher light transmission than the other groups (p=0.003; ANOVA). Polished full-contour exhibited significantly less contact wear at the restoration (p=0.01; ANOVA) and higher contact wear at the antagonist (p=0.016; ANOVA) compared to the other groups. Glazed full-contour zirconia showed similar contact wear at the antagonist compared to veneering technique (p=0.513, post-hoc LSD). Crowns with conventional veneering showed significantly lower load-bearing capacity (p<0.001; ANOVA). SignificanceMilling zirconia to full-contour with glazed surface might be an alternative to traditionally veneered restorations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.