Abstract

In vitro culture of rooted and unrooted olive microshoots, established from seed lines of free-pollinated “Frantoio” and “Moraiolo” cultivars, were evaluated for NaCl tolerance. The aim was to use growth and physiological parameters in order to identify salt-adapted genotypes. Leaf tissue elemental distribution of Na, Cl and K was also investigated in unrooted plantlets by cryo-scanning electron microscopy and energy-dispersive X-ray microanalysis. Both in unrooted and rooted plantlets, increased concentrations of NaCl reduced shoot growth, whereas plant survival was not affected. However, no significant interactions between line and NaCl concentration were found. Elemental distribution showed that Moraiolo J and Frantoio Z accumulated more Na and Cl inside leaves, and that these elements followed a tissue-dependent pattern. Rooting capacity was reduced at the higher levels of NaCl. Significant interactions between seed line and salt treatment were found. Seed lines showed different abilities to develop roots at different salt levels. In particular, Frantoio Z showed a significant and different behaviour relative to the other seed lines at 50 mM NaCl with regard to both length and dry weight of roots. The results obtained suggest that rooting parameters are the most useful tools in the evaluation and screening of salt-tolerant olive genotypes through in vitro shoot culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call