Abstract

The in vitro mechanism of ring opening of leflunomide resulting in the formation of a metabolite A771726 has been studied by time series surface enhanced Raman spectra using NaOH buffer at pH ∼10. The decomposition of leflunomide into A771726 through NO bond cleavage was identified by the Raman signature of CN bond of A771726. The experimental results have been correlated with theory by transition state calculations of the reaction using different basic catalysts; OH−, formate and formate+water and water alone. The reaction barrier energy is found to be lowest with OH− as a catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.