Abstract
Coronaviruses (CoVs) are enveloped nonsegmented positive-sense RNA viruses belonging to the family Coronaviridae that contain the largest genome among RNA viruses. Their genome encodes 4 major structural proteins, and among them, the Spike (S) protein plays a crucial role in determining the viral tropism. It mediates viral attachment to the host cell, fusion to the membranes, and cell entry using cellular proteases as activators. Several in vitro models have been developed to study the CoVs entry, pathogenesis, and possible therapeutic approaches. This article is aimed at summarizing the current knowledge about the use of relevant methodologies and cell lines permissive for CoV life cycle studies. The synthesis of this information can be useful for setting up specific experimental procedures. We also discuss different strategies for inhibiting the binding of the S protein to the cell receptors and the fusion process which may offer opportunities for therapeutic intervention.
Highlights
Coronaviruses (CoVs) are enveloped nonsegmented positive-sense RNA viruses belonging to the family Coronaviridae, order Nidovirales, broadly distributed in humans, and other mammals [1]
We aim to review in vitro studies on highly pathogenic CoVs focusing on angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 26 (CD26)/dipeptidyl peptidase 4 (DPP4) receptor expression, cell tropism, and models useful for better understanding the viral life cycles, which could potentially offer opportunities for therapeutic intervention
Studies were identified by crossing the name coronavirus or COVID-19 with the following key terms: SARS-CoV, MERS-CoV, SARS-CoV-2, Viral entry, ACE2 and/or
Summary
Coronaviruses (CoVs) are enveloped nonsegmented positive-sense RNA viruses belonging to the family Coronaviridae, order Nidovirales, broadly distributed in humans, and other mammals [1]. With 80–160 nm in diameter, CoVs contain the largest viral genome (27–32 kilobase pairs) among the RNA viruses, sharing similar genome organization [3, 4]. They encode for 14-16 nonstructural proteins and 4 structural proteins, the spike (S) glycoprotein, small envelope protein (E), integral membrane protein (M), and genome-associated nucleocapsid protein (N) [3, 5, 6]. The proteins E, M, and N are mainly responsible for virions assembly while the S protein mediates viral attachment, membrane fusion, and entry, determining tissue and cell tropism as well as host range [5, 7]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have