Abstract

Perfluoroundecanoic acid (PFUdA) is one of the most highly detected perfluoroalkyl compounds in wild bird tissues and eggs. Although PFUdA does not affect hatching success, many PFCs are known to impair post-hatch development and survival. Here we use microarrays to survey the transcriptional response of cultured chicken embryonic hepatocytes (CEH) to PFUdA for potential targets of PFUdA action that could lead to developmental deficiencies in exposed birds. At 1μM and 10μM PFUdA significantly altered the expression of 346 and 676 transcripts, respectively (fold-change>1.5, p<0.05, false discovery rate-corrected). Using functional, pathway and interactome analysis we identified several potentially important targets of PFUdA exposure, including the suppression of the acute-phase response (APR). We then measured the expression of five APR genes, fibrinogen alpha (fga), fibrinogen gamma (fgg), thrombin (f2), plasminogen (plg), and protein C (proC), in the liver of chicken embryos exposed in ovo to PFUdA. The expression of fga, f2, and proC were down-regulated in embryo livers (100 or 1000ng/g, p<0.1) as predicted from microarray analysis, whereas fibrinogen gamma (fgg) was up-regulated and plg was not significantly affected. Our results demonstrate the utility of CEH coupled with transcriptome analysis as an in vitro screening tool for identifying novel effects of toxicant exposure. Additionally, we identified APR suppression as a potentially important and environmentally relevant target of PFUdA. These findings suggest in ovo exposure of birds to PFUdA may lead to post-hatch developmental deficiencies, such as impaired inflammatory response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.