Abstract
Several perfluoroalkyl compounds (PFCs) are ubiquitous environmental contaminants that can biomagnify in species at high trophic levels including wild birds. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have been detected in wild birds and are known to reduce hatching success of laboratory-exposed chicken embryos at environmentally relevant concentrations. Limited toxicity data are available regarding avian exposure to PFCs of chain lengths greater than C 8, which are of increasing environmental relevance following the recent phase-out of PFOS and PFOA. In this study, linear PFOA, perfluoroundecanoic acid (PFUdA) and perfluorodecane sulfonate (PFDS) were injected into the air cell of white leghorn chicken eggs ( Gallus gallus domesticus) prior to incubation to determine effects on embryo pipping success. Furthermore, mRNA expression of key genes involved in pathways implicated in PFC toxicity was monitored in liver tissue. PFOA, PFUdA or PFDS had no effect on embryonic pipping success at concentrations up to 10 μg/g. All PFCs accumulated in the liver to concentrations greater than the initial whole-egg concentration as determined by HPLC/MS/MS. Hepatic accumulation was highest for PFOA (4.5 times) compared to PFUdA and PFDS. Cytochrome P450 1A4 and liver fatty acid binding protein mRNA expression increased after exposure to PFUdA but was only statistically significant at 10 μg/g; several orders of magnitude higher than levels found in wild bird eggs. Based on the present results for white leghorn chickens, current environmental concentrations of PFOA, PFUdA and PFDS are unlikely to affect the hatching success of wild birds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.