Abstract

Because YM17E (1,3-bis[[1-cycloheptyl-3-(p-dimethylaminophenyl) ureido]methyl]benzene dihydrochloride) inhibits acyl coenzyme A:cholesterol acyltransferase (ACAT) it has potential application in the treatment of hypercholesterolaemia. In man and animals YM17E is extensively metabolized, via N-demethylation, to five active metabolites (M1, M2-a, M2-b, M3 and M4). The main objectives of this study were to examine inhibition of YM17E metabolism by the products and identify the cytochrome P450 isoforms in liver microsomes which catalyse in-vitro YM17E metabolism in man. In microsomes in man N-demethylation of YM17E to M1 occurred enzymatically; for up to 45 s the rate was linearly proportional to the microsomal protein concentration. This reaction was inhibited by metabolites M2-a, M2-b, M3 and M4. Further, N-demethylation of [14C]-YM17E was also inhibited by its product, M1. These results showed that primary metabolism of YM17E was inhibited by its products, and supported the finding that the non-linear increase in plasma concentration of the parent drug and metabolites observed in an in-vivo study was due to inhibition by these products. Metabolic activity in microsomes from ten individual human livers demonstrated that YM17E N-demethylase activity correlated closely with testosterone 6 beta-hydroxylase activity. When cytochrome P450 isozyme-specific substrates and chemical inhibitors were used to inhibit YM17E N-demethylase activity, CYP3A-specific substrate and inhibitors such as nifedipine, ketoconazole and triacetyloleandomycin strongly inhibited this activity, whereas CYP1A-specific substrate or inhibitor, ethoxyresorufin and alpha-naphthoflavone, inhibited weakly. Other CYP inhibitors, in contrast, had few or no effects. An inhibition study using anti-rat CYP1A1, CYP2B1, CYP2C11, CYP2E1 and CYP3A2 antibodies demonstrated that only anti-rat CYP3A2 antibody inhibited YM17E metabolism, to 40% of control level, with no other antibodies showing an inhibitory effect. Of seven cDNA-expressed P450 isoforms in man (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1 and CYP3A4), CYP3A4, CYP2D6 and CYP1A2 isozyme exhibited substantial catalytic activity of N-demethylation of YM17E. These results indicate the predominant role of CYP3A4 in liver metabolism of YM17E in man.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call