Abstract
BackgroundHypertonic saline hydroxyethyl starch (HH) has been recommended for first line treatment of hemorrhagic shock. Its effects on coagulation are unclear. We studied in vitro effects of HH dilution on whole blood coagulation and platelet function. Furthermore 7.2% hypertonic saline, 6% hydroxyethylstarch (as ingredients of HH), and 0.9% saline solution (as control) were tested in comparable dilutions to estimate specific component effects of HH on coagulation.MethodsThe study was designed as experimental non-randomized comparative in vitro study. Following institutional review board approval and informed consent blood samples were taken from 10 healthy volunteers and diluted in vitro with either HH (HyperHaes®, Fresenius Kabi, Germany), hypertonic saline (HT, 7.2% NaCl), hydroxyethylstarch (HS, HAES6%, Fresenius Kabi, Germany) or NaCl 0.9% (ISO) in a proportion of 5%, 10%, 20% and 40%. Coagulation was studied in whole blood by rotation thrombelastometry (ROTEM) after thromboplastin activation without (ExTEM) and with inhibition of thrombocyte function by cytochalasin D (FibTEM), the latter was performed to determine fibrin polymerisation alone. Values are expressed as maximal clot firmness (MCF, [mm]) and clotting time (CT, [s]). Platelet aggregation was determined by impedance aggregrometry (Multiplate) after activation with thrombin receptor-activating peptide 6 (TRAP) and quantified by the area under the aggregation curve (AUC [aggregation units (AU)/min]). Scanning electron microscopy was performed to evaluate HyperHaes induced cell shape changes of thrombocytes.Statistics: 2-way ANOVA for repeated measurements, Bonferroni post hoc test, p < 0.01.ResultsDilution impaired whole blood coagulation and thrombocyte aggregation in all dilutions in a dose dependent fashion. In contrast to dilution with ISO and HS, respectively, dilution with HH as well as HT almost abolished coagulation (MCFExTEM from 57.3 ± 4.9 mm (native) to 1.7 ± 2.2 mm (HH 40% dilution; p < 0.0001) and to 6.6 ± 3.4 mm (HT 40% dilution; p < 0.0001) and thrombocyte aggregation (AUC from 1067 ± 234 AU/mm (native) to 14.5 ± 12.5 AU/mm (HH 40% dilution; p < 0.0001) and to 20.4 ± 10.4 AU/min (HT 40% dilution; p < 0.0001) without differences between HH and HT (MCF: p = 0.452; AUC: p = 0.449).ConclusionsHH impairs platelet function during in vitro dilution already at 5% dilution. Impairment of whole blood coagulation is significant after 10% dilution or more. This effect can be pinpointed to the platelet function impairing hypertonic saline component and to a lesser extend to fibrin polymerization inhibition by the colloid component or dilution effects.Accordingly, repeated administration and overdosage should be avoided.
Highlights
Hypertonic saline hydroxyethyl starch (HH) has been recommended for first line treatment of hemorrhagic shock
Small volume resuscitation by intravenous administration of small amounts of hypertonic saline hydroxyethyl starch has been introduced for rapid restoration of normovolemia following severe trauma
Since small volume resuscitation was associated with alterations in the coagulation system in this animal model as well, we evaluated these complex effects on coagulation and thrombocyte function in vitro in human whole blood and tested the hypothesis that HyperHaes causes impaired whole blood coagulation and platelet function
Summary
Hypertonic saline hydroxyethyl starch (HH) has been recommended for first line treatment of hemorrhagic shock. Small volume resuscitation by intravenous administration of small amounts of hypertonic saline hydroxyethyl starch has been introduced for rapid restoration of normovolemia following severe trauma. Both hypertonic sodium chloride as well as hydroxyethyl starch, impair coagulation and platelet function; the former by altering plasma clotting times and platelet aggregation [2], the latter by decreasing FVIII plasma concentration and by interference with fibrin polymerization and decreasing clot strength [3,4,5,6]. In a porcine model of hemorrhagic shock and resuscitation, in general, the least effects on coagulation were observed following small volume resuscitation by administration of hypertonic saline hydroxyethyl starch for resuscitation [7]. Since small volume resuscitation was associated with alterations in the coagulation system in this animal model as well, we evaluated these complex effects on coagulation and thrombocyte function in vitro in human whole blood and tested the hypothesis that HyperHaes causes impaired whole blood coagulation and platelet function
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have