Abstract

Adleman's illustration of molecular computing using DNA paved the way toward an entirely new direction of computing (Adleman, L. M. Science 1994, 266, 1021). The exponential time complex combinatorial problem on a traditional computer turns out to be a separation problem involving a polynomial number of steps in DNA computing experiments. Despite being a promising concept, the implementations of existing DNA computing procedures were restricted only to the smaller size formulations. In this work, we demonstrate a structure assisted DNA computing procedure on a bigger size Hamiltonian cycle problem involving 18 vertices. The developed model involves the formation and digestion of circular structure DNA, iteratively over multiple stages to eliminate the incorrect solutions to the given combinatorial problem. A high accuracy is obtained compared to other structure assisted models, which enable one to solve the bigger size problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.