Abstract

Hydrogel coatings were stabilized by titanium carbonitride a-C:H:Ti:N buffer layers deposited directly onto the polyurethane (PU) substrate beneath a final hydrogel coating. Coatings of a-C:H:Ti:N were deposited using a hybrid method of pulsed laser deposition (PLD) and magnetron sputtering (MS) under high vacuum conditions. The influence of the buffer a-C:H:Ti:N layer on the hydrogel coating was analysed by means of a multi-scale microstructure study. Mechanical tests were performed at an indentation load of 5mN using Berkovich indenter geometry. Haemocompatible analyses were performed in vitro using a blood flow simulator. The blood-material interaction was analysed under dynamic conditions. The coating fabrication procedure improved the coating stability due to the deposition of the amorphous titanium carbonitride buffer layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.