Abstract
There is a definite association between antipsychotic drugs and arterial hypertension. However, endothelium functions are scarcely considered. This investigation was carried out to study the mechanisms involved in clozapine endothelium-dependent vascular reactivity. The experimental animals were male Wistar rats with a mean age of 70-90 days (250-300 g). The endothelium-dependent vascular reactivity was studied by measuring the isometric force and then constructing clozapine concentration-response curves. The force registrations were obtained in the aorta rings with and without the endothelium precontracted with phenylephrine (PE10-6M) treatment; this followed incubation for 30 min in "organ chambers" with different inhibitors: l- NAME (nitric oxide/cGMP); indomethacin (PGI2/cAMP); tetraethylammonium (TEA), and specific hyperpolarization blockers (paxillin, apamin, glibenclamide). The data were presented as the mean ± standard error of the mean (SEM) and were compared by one-way ANOVA or two-way ANOVA followed by the Bonferroni post-test. The primary outcomes were: 1) Clozapine-induced endothelium-dependent relaxation was not inhibited by indomethacin, l-NAME, ODQ, and methylene blue (MB); 2) The combination of l-NAME + indomethacin partially prevented the relaxation; 3) Clozapine did not induce relaxation in vessels contracted with KCl; 4) TEA did not block the clozapine-induced relaxation in vessels precontracted with PE (10-6 M); 5) The potassium channel blockers paxillin and apamin did not prevent relaxation but glibenclamide did. Concerning the mechanisms involved in clozapine endothelium-dependent vascular reactivity, the present study suggests that there is synergistic participation that probably occurs through a crosstalk mechanism of the cAMP, cGMPpathways and hyperpolarization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have