Abstract

BackgroundEnteric methane (CH4) accounts for about 70% of total CH4 emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric CH4 emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing CH4 and hydrogen sulfide (H2S) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production.MethodsAll experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOMRF wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of 39 ± 1 °C in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases (CH4 and carbon dioxide-CO2) and H2S concentrations. CH4 and CO2 gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and H2S concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis.ResultsCompared to the control treatment the H2S and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of 1000 μg g− 1 have exhibited the highest amount of concentration reductions for all three gases and microbial population.ConclusionResults suggest that both 500 and 1000 μg g− 1 nZnO application levels have the potential to reduce GHG and H2S concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.