Abstract

Penetration of adhesives into the demineralized dentin surface and their subsequent conversion are critically important to longevity of the adhesive resin (AR)-dentin bond. The durability of the resin-dentin bond is investigated by monitoring the change of adhesive concentration within the hybrid layer (HL) of aged specimens using Raman spectroscopy. Absolute molar concentrations of Bis-GMA and HEMA were measured across the HL of resin-dentin specimens 24 h after photopolymerization and after 24-week storage in one of three media: artificial saliva (SAL), SAL containing cholesterol esterase to attack resin (EST), and SAL containing bacterial collagenase to attack collagen (COL). No significant difference among these groups for both Bis-GMA and HEMA molar concentrations at 24-h storage was found; however, concentrations decreased from the AR to the middle of the HL. Concentrations remained unchanged at any resin-dentin position after aging in SAL. In the HL, concentrations significantly decreased with aging in COL and tended to decrease in EST. While showing potential enzymatic biodegradative effects of endogenous matrix metalloproteinases and salivary esterases, this methodology may also prove to be a valuable assessment of new chemistries and future approaches to improve resin-dentin bond performance. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call