Abstract

Worldwide heat stress (HS) conditions have a negative impact on dairy cow fertility. However, understanding of the effect of heat stress on endometrial functions is still unclear. The present study aimed to investigate the effects of differential heat exposure conditions on the immune response and prostaglandin biosynthesis of bovine endometrium challenged with bacterial lipopolysaccharide (LPS). Cultures of endometrial cells were grown to confluence at 37 °C (control) and 40.4 °C for 24 h after confluence (short-term heat exposure) and 40.4 °C for 8 days from the beginning of the culture (long-term heat exposure), prior to a challenge by 100 ng/mL LPS for 12 h. LPS altered ALOX12, IL8, IL1B, S100A8, PTGES and AKR1B1 expressions, as well as secretory IL8 and PGF2α. Short-term heat exposure decreased S100A8, IL8 and PGF2α compared with the control temperature, while long-term heat exposure decreased S100A8 and PGF2α. In contrast, HSPA5 expression was not altered by heat exposure or LPS. Indeed, the short-term heat treatment was insufficient for accomplishing the responses of the endometrium to LPS treatment for IL8, S100A8 and PTGES expressions when compared with other temperature conditions. Our findings showed that heat exposure could compromise endometrium immune response and prostaglandin biosynthesis in different ways based on elevated temperature duration, which could reduce subsequent fertility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call