Abstract

There is increasing interest in using methanol and other alcohol fuels as an alternative energy source in the United States and developing nations. However, methanol-fueled vehicles have higher direct emissions of formaldehyde (HCHO) than gasoline-fueled vehicles, which has led to concern about increases in atmospheric concentration of HCHO. Formaldehyde at concentrations of 300, 600, 900, and 1200 μM reduced germination of hydrated Douglas-fir (Pseudotsuga menziesii) pollen in vitro. HCHO concentrations and pH in media containing pollen decreased during the 25-h incubation, with decreases proportional to HCHO concentration. This effect was not seen with heat-killed pollen, which suggests a detoxification mechanism. Ion leakage (measured as electrical conductivity) of pollen increased within 20 h in all HCHO treatments compared to controls. Stress also was indicated by TTC staining, which also decreased after HCHO treatment compared to controls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call