Abstract
The presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor in various testicular cells and spermatozoa suggests a potential role in enhancing spermatogonial and postmeiotic cell development. Moreover, GM-CSF activates the pivotal pathways implicated in sperm motility regulation and glucose metabolism. However, the impact of GM-CSF on testicular biopsies from patients with obstructive azoospermia (OA) remains unexplored. Therefore, this study aimed to investigate the in vitro effects of GM-CSF on the expression of genes related to glucose transporters and signaling pathways, sperm motility, and viability in testicular biopsies. Following testicular sperm extraction from 20 patients diagnosed with OA, each sample was divided into two parts: the experimental samples were incubated with medium containing 2ng/ml GM-CSF at 37°C for 60min, and the control samples were incubated with medium without GM-CSF. Subsequently, the oocytes retrieved from the partner were injected with sperm from the treatment and control groups. The sperm parameters (motility and viability), the expression levels of sperm motility-related genes (PIK3R1, PIK3CA, and AKT1), and the expression levels of sperm energy metabolism-related genes (GLUT1, GLUT3, and GLUT14) were assessed. Furthermore, the fertilization and day 3 embryo development rate and embryo quality were evaluated. Compared with those in the nontreated group, the motility parameters and the mRNA expression levels of PIK3R1, AKT1, and GLUT3 in testicular sperm supplemented with GM-CSF were significantly greater (p < 0.05). However, no significant differences in the mRNA expression of PIK3CA, GLUT1, or GLUT14 were detected. According to the ICSI results, compared with the control group, the GM-CSF treatment group exhibited significantly greater fertilization rates (p = 0.027), Day 3 embryo development rate (p = 0.001), and proportions of good-quality embryos (p = 0.002). GM-CSF increased the expression of genes related to motility and the energy metabolism pathway and effectively promoted the motility of testis-extracted spermatozoa, consequently yielding positive clinical outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have