Abstract

BackgroundNeurogenic differentiation of human marrow stromal stem cells (hMSCs) into neural precursor cells (NPCs) offers new hope in many neurological diseases. Stromal cells can be differentiated into NPCs using small molecules acting as chemical inducers. The aim of this study is to formulate an efficient, direct, fast and safe protocol to differentiate hMSCs into NPCs using different inducers: b-mercaptoethanol (BME), triiodothyronine (T3), and curcumin (CUR). New methodhMSCs were subjected to either 1 mM BME, 0.5 µM T3, or 5 µM CUR. Neurogenic differentiation was determined by assessing the protein expression of PAX6, SOX2, DLX2, and GAP-43 with flow cytometry and immunofluorescence, along with Nissl staining of differentiated cells. Results and Comparison with Existing MethodIt was revealed that T3 and CUR are 70–80% better than BME in terms of efficiency and safety, and surprisingly BME was a good promoting factor for cell preconditioning with limited effects on neural trans-differentiation related to its toxic effects on cell viability. ConclusionReprogramming of bone marrow stromal cells into neural cells gives hope for treating different neurological disorders. Our study shows that T3 and CUR were effective in generation of NPCs from hMSCs with preservation of cell viability. BME was a good promoting factor for cell preconditioning with limited effects on neural transdifferentiation related to its toxic effects on cell viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call