Abstract
The physical and mechanical properties of poly(l-lactide)/poly(e-caprolactone) (PLLA/PCL) blends reinforced with multiwalled carbon nanotubes (MWCNTs) before and after in vitro degradation were investigated. Because of brittleness, PLLA needs to be plasticized by PCL as a soft polymer. The MWCNTs are used to balance the stiffness and the flexibility of PLLA/PCL blends. The results showed that with incremental increase in concentration of MWCNTs in composites, the agglomerate points of MWCNTs were increased. The physical and mechanical properties of prepared PLLA/PCL blends and MWCNT/PLLA/PCL nanocomposites were characterized. The X-ray diffraction analysis of the prepared blends and composites showed that MWCNTs, as heterogeneous nucleation points, increased the lamella size and therefore the crystallinity of PLLA/PCL. The mechanical strength of blends was decreased with incremental increase in PCL weight ratio. The mechanical behavior of composites showed large strain after yielding and high elastic strain characteristics. The tensile tests results showed that the tensile modulus and tensile strength are significantly increased with increasing the concentration of MWCNTs in composites, while, the elongation-at-break was decreased. The in vitro degradation rate of polymer blends in phosphate buffer solution (PBS) increased with higher weight ratio of PCL in the blend. The in vitro degradation rate of nanocomposites in PBS increased about 65% when the concentration of MWCNTs increased up to 3% (by weight). The results showed that the degradation kinetics of nanocomposites for scaffolds can be engineered by varying the contents of MWCNTs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have