Abstract
Magnesium alloys as biodegradable materials have received great attention for orthopedic application as a result of their good biocompatibility, bioactivity, and mechanical properties. However, the clinical use of Mg alloys is restricted by high degradation rate. In order to reduce the degradation rate, TiO2 incorporated micro-arc oxidation (TM) coatings were prepared on Mg- Ca alloy using micro-arc oxidation (MAO). Subsequently, zinc-doped hydroxyapatite (ZH) coating was deposited by electrophoretic deposition (EPD) on the MAO coating. The electrochemical test results demonstrated that the deposition of ZH composite coatings on Mg alloy significantly reduces its corrosion rate and improves its charge transfer resistance. Antibacterial activity of the coating against Escherichia coli (E. coli) was studied using disk-diffusion and spread plate methods. The results revealed that the inhibition zone amplified after deposition of TM and ZH coatings on Mg alloy, whereas more inhibition zone was found around ZH coating. In addition, the number of E. coli colonies reduces to 92% after ZH coating implying its good antibacterial properties. The cytotoxicity test indicated that cell viability of MG63 osteoblast cells cultured with ZH extracts was higher compared to the TM coating and bare Mg alloy. These results confirm that Mg alloy coated by TM/ZH exhibits high corrosion resistance, antibacterial activity and favorable bioactivity and cytocompatibility, indicating their substantial potentials for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.