Abstract
It is a challenging task to prepare a coating on Mg alloys for desirable corrosion resistance, good antibacterial ability and biocompatibility. In this research work, an in-situ Mg(OH)2 coating incorporated with sodium alginate (SA) and β-cyclodextrin (β-CD)@curcumin (Cur) was formed on the surface of micro arc oxidation (MAO) coated AZ31 alloy via a low temperature hydrothermal method. Characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR) and scanning electron microscope (SEM) were employed to characterize the chemical composition and surface morphology of the coatings. The corrosion protection ability of the coatings was monitored via electrochemical polarization, hydrogen evolution and immersion tests. Photothermal antibacterial ability and cytocompatibility of the coatings were evaluated by plate counting method under the irradiation of 808 nm-near infrared light, in vitro cytotoxicity tests (MTT) and live/dead cell staining. The results indicate that a chelation of the organic molecules led to the formation of a MAO/(β[email protected])-SA-Mg(OH)2 coating with excellent corrosion protection, multi- antibacterial ability and almost no toxicity to the cells. Especially, the coating provided photothermal performance through the light absorption of Cur, which was encapsulated by β-CD to improve its bioavailability. SA enhanced the binding force between the drug and the substrate. This novel coating designated the potential application on bioabsorbable magnesium alloys.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.