Abstract

An efficient micropropagation protocol was developed for Cedrela fissilis (Meliaceae) using nodal segments from juvenile origin for axillary shoot proliferation. Shoot proliferation was significantly affected by salt formulation, explant origin and 6-benzyladenine concentration. Maximum multiplication rates (6–7 new plants were produced in the second subculture cycle per single cotyledonary node cutting) were achieved on Murashige and Skoog media supplemented with 1.25–5.0 μM 6-benzyladenine. Addition of α-naphthaleneacetic acid to these media caused significant inhibition on shoot proliferation and growth and stimulated callus formation. High frequency callus initiation and synergistic effects on callus growth were achieved on Murashige and Skoog medium supplemented with 6-benzyladenine at either 1.25, 2.5 or 5.0 μM combined, respectively, with 2.5, 1.25–5.0 or 5.0 μM α-naphthaleneacetic acid. Rooting was achieved, after 10–12 days, with 87–100% of the node cuttings on half strength Murashige and Skoog medium either without growth regulators or supplemented with 2.5 μM indole-3-butyric acid. Regenerated plants were successfully acclimatized on sterilized sand, for 21 days, but for further plant development the sand:soil (1:1) mixture was the best substrate. The survival rate of plantlets under ex vitro conditions was 100% after 3 months. The optimized micropropagation and callus culture protocols offer the possibility to use the organ/cell culture techniques for vegetative propagation, cryopreservation and secondary metabolism studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call