Abstract

Skeletal muscle satellite cells are adult muscle-derived stem cells receiving increasing attention. Sheep satellite cells have a greater similarity to human satellite cells with regard to metabolism, life span, proliferation and differentiation, than satellite cells of the rat and mouse. We have used 2-step enzymatic digestion and differential adhesion methods to isolate and purify sheep skeletal muscle satellite cells, identified the cells and induced differentiation to examine their pluripotency. The most efficient method for the isolation of sheep skeletal muscle satellite cells was the type I collagenase and trypsin 2-step digestion method, with the best conditions for in vitro culture being in medium containing 20% FBS+10% horse serum. Immunofluorescence staining showed that satellite cells expressed Desmin, α-Sarcomeric Actinin, MyoD1, Myf5 and PAX7. After myogenic induction, multinucleated myotubes formed, as indicated by the expression of MyoG and fast muscle myosin. After osteogenic induction, cells expressed Osteocalcin, with Alizarin Red and ALP (alkaline phosphatase) staining results both being positive. After adipogenic induction, cells expressed PPARγ2 (peroxisome-proliferator-activated receptor γ2) and clear lipid droplets were present around the cells, with Oil Red-O staining giving a positive result. In summary, a successful system has been established for the isolation, purification and identification of sheep skeletal muscle satellite cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.