Abstract

Enzymatic digestion has been the gold standard for stromal vascular fraction (SVF) isolation but remains expensive and raises practical and legal concerns. Mechanical SVF isolation methods have been known to produce lower cell yields, but may potentially produce a more robust product by preserving the extracellular matrix niche. The aim of this study was to compare mechanically dissociated SVF (M-SVF) and enzymatically digested SVF (E-SVF) in terms of wound-healing efficacy. Lipoaspirate was partitioned into 2 equal groups and processed by either mechanical or enzymatic isolation methods. After SVF isolation, cell counts and viabilities were determined by flow cytometry and cell proliferation rates were measured by the WST-1 test. A wound-healing scratch assay test, which is commonly used to model in-vitro wound healing, was performed with both cell cocktails. Collagen type 1 (Col1A) gene expression level, which is known for its role in wound healing, was also measured for both groups. As predicted, E-SVF isolated more cells (mean [standard deviation], 1.74 [3.63] × 106/mL, n = 10, P = 0.015) than M-SVF (0.94 [1.69] × 106/mL, n = 10, P = 0.015), but no significant difference was observed in cell viability. However, M-SVF expressed over 2-fold higher levels of stem cell surface markers and a 10% higher proliferation rate compared with E-SVF. In addition, the migration rate and level of Col1A gene expression of M-SVF were found to be significantly higher than those of E-SVF. Although the cell yield of M-SVF was less than that of E-SVF, M-SVF appears to have superior wound-healing properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call