Abstract

Objective: The role of Stromal Vascular Fraction (SVF) cell suspension obtained from adipose tissue in wound healing is gaining importance day by day. In this study, the role of SVF cell population, isolated by enzymatic and mechanical methods in wound healing, will be examined in vitro. Material and Method: An SVF cell cocktail was isolated by mechanical and enzymatic methods after adipose tissue was obtained from 10 different patients by the liposuction method (the adipose tissue was divided into two equal groups for enzymatic and mechanical methods). After the isolation process is done, cell viability and cell number were counted using flow cytometry, and cell proliferation rates were measured by WST-1 assay. The Wound Healing Scratch Assay test, which is used as an in vitro model for wound healing, was performed with cell cocktails obtained from both groups. After isolation, the level of expression of the collagen type 1 gene, known to be involved in wound healing, was measured in both groups. Results: While the SVF (E-SVF) cell cocktail obtained bythe enzymatic method was 1,52x106 /ml (±3,63, n=10, p=0,015), the number of SVF (M-SVF) cell cocktails obtained by mechanical method was 0,67x106 /ml (±1,69, n=10, p=0,015). No significant difference was observed between cell viability of SVF cell cocktails isolated by two different methods. The M-SVF cell cocktail had a 10% higher cell proliferation rate compared to E-SVF. Furthermore, M-SVF cell migration rates and Col1 gene levels were found to be higher than E-SVF cells. Conclusion: Although the cell number of the M-SVF cell cocktail was less than the cell number of the E-SVF cell cocktail, the collagen type 1 gene level of the M-SVF cell cocktail was found to be higher, so the M-SVF cell cocktail had higher wound healing properties. 

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call