Abstract

Compared to conventional planting material, micropropagated plantlets are highly susceptible to Fusarium wilt because they are free from beneficial root inhabitants. We aimed to introduce mixtures of beneficial microbes in the plantlets in the rooting medium under in vitro conditions rather than by field applications. Endophytes and rhizobacteria from different banana cultivars and plantation areas were screened and characterized. Under in vitro conditions, banana tissue culture plantlets were bacterized with the prospective endophytes, Bacillus subtilis strain EPB56 and EPB10 and the rhizobacteria, Pseudomonas fluorescens strain Pf1 and effects of in vitro bacterization were investigated against Fusarium oxysporum f. sp. cubense race 1 under glasshouse and field conditions. Inoculation of bananas during micropropagation allowed for the omission of minerals and salts as well as vitamins from the growing media while resulting in plantlets close to double size compared to the controls with full strength media. All endophyte and rhizobacteria strains tested resulted in significant reductions in Fusarium infection in the glasshouse and field and in significantly better plant growth. The three-way combination of bacteria resulted in 78% disease reduction and more than doubled the yields compared to the untreated controls across two field experiments. Three-way inoculation led to yields of 23 and 24 kg/ bunch compared to chemical disease control (13; 15 kg/bunch) and untreated controls (10; 13 kg/bunch) in the two field experiments. Under glasshouse conditions, activity of defence enzymes was significantly increased by all inoculation treatments. Inoculation in vitro led to the establishment of the microorganisms in the plant system before delivering to the farming community. Micropropagation combined with the establishment of a beneficial microbial consortium should complement the micropropagated plants for easier adaptation under field conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.