Abstract
To assess the potential of Permacol (Tissue Science Laboratories, Swillington, UK), a natural matrix derived from decellularized porcine dermis, as a matrix for urological tissue engineering, and thus to develop an in vitro regimen for assessing the biocompatibility of potential biomaterials before experimentation in animal models. Urinary tract-derived normal human urothelial (NHU) and smooth muscle (SM) cells were grown in monoculture as autologous cell lines. Permacol was assessed for its ability to support colonization by NHU and SM cells. The failure of the Permacol matrix to be infiltrated by SM cells was further investigated using the highly invasive EJ bladder cancer cell line. NHU cells readily attached and grew as a monolayer on the surface of Permacol. Cells stratified when the culture medium was supplemented with 2 mmol/L calcium. EJ cells initially grew on the surface and subsequently invaded the matrix, while SM cells only colonized the surface of Permacol when cocultured with NHU cells. Cytoxicity, evaluated by contact inhibition and conditioned-medium assays, excluded the presence of soluble toxins in the biomaterial. We developed a simple, reproducible and rigorous regimen for assessing potential biomaterials in vitro. Applying this system might reduce the use of animals and help to identify causes of potential bio-incompatibility. The inability of SM cells to penetrate the Permacol matrix suggests that required matrix-bound signalling factors are absent, possibly as a result of the procedures used for processing Permacol. Identifying the key regulatory factors that regulate SM cell growth and orchestrate regenerative processes in the urinary tract will be important for developing suitable biomaterials for the bladder.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have