Abstract

BackgroundImperative need exists to search for new anti-TB drugs that are safer, and more effective against drug-resistant strains. Medicinal plants have been the source of active ingredients for drug development. However, the slow growth and biosafety level requirements of M. tuberculosis culture are considerable challenges. M. smegmatis can be used as a surrogate for M. tuberculosis. In the current study, preliminary phytochemical screening and antimycobacterial activity evaluation of crude methanolic extracts of medicinal plants against M. smegmatis, and two M. tuberculosis strains, were conducted. Materials and MethodsCrude methanolic extracts, obtained from the leaves of L. camara, roots of C. sanguinolenta, and stem barks of Z. leprieurii, were tested for antimycobacterial activity against M. smegmatis (mc2155), pan-sensitive (H37Rv), and rifampicin-resistant (TMC-331) M. tuberculosis, using visual Resazurin Microtiter Assay (REMA) on 96 well plates. Preliminary qualitative phytochemical screening tests were performed using standard chemical methods. ResultsThe three methanolic extracts inhibited mycobacterial growth in vitro. They were more active against rifampicin-resistant strain with MICs of 176, 97, and 45 µg/mL for L. camara, C. sanguinolenta, and Z. leprieurii extracts, respectively. The lowest activity was observed against M. smegmatis with MICs of 574, 325, and 520 µg/mL, respectively. Against H37Rv, activity was intermediate to those of TMC-331 and mc2155. However, L. camara extract showed the same activity against H37Rv and M. smegmatis. Preliminary phytochemical analysis revealed alkaloids, flavonoids, phenolic compounds, saponins, tannins, and terpenoids. ConclusionsLeaves of L. camara, roots of C. sanguinolenta, and stem barks of Z. leprieurii exhibit antimycobacterial activity against M. smegmatis, pan-sensitive, and rifampicin-resistant M. tuberculosis. This offers the possibilities for novel therapeutic opportunities against TB including multidrug-resistant TB. Further investigations on safety and mechanisms of action are required. These studies could be done using M. smegmatis as a surrogate for the highly pathogenic M. tuberculosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call