Abstract

Endoplasmic reticulum (ER) and associated signaling pathways are involved in diabetic cardiomyopathy (DCM) however, detailed studies are not available. The present study investigated the role of ER stress and related pathways such as ER-phagy, apoptosis and their underlying mechanisms using appropriate models. Beneficial effect of chlorogenic acid was also evaluated against ER stress mediated DCM. H9c2 cells with high glucose (33 mM, in vitro model of hyperglycemia) showed significant activation of ER stress response (GRP78, PERK, IRE1α, ATF6α) and altered its regulatory proteins (PDI, ERO1α). Also, it enhanced ER-phagy through upregulation of Sec62, RTN3 and downregulation of FAM134B. High glucose caused apoptosis via increased levels of CHOP, caspase 12 and calnexin. All these proteins (PERK, IRE1α, ATF6α, RTN3, Sec62 and FAM134B) have been found to have a significant role in the functioning of heart such as excitation contraction coupling and we expect these alterations to induce cardiomyopathy during diabetes. This was confirmed in in vivo study too. High fat, high fructose diet with mild streptozotocin induced diabetic rats showed an increased expression of BNP confirming cardiac injury. We also noticed severe ER stress in the heart of diabetic animals. All these have contributed significantly into alterations in histopathology and increase of weight of the hearts. These findings clearly show that ER stress plays a vital protagonist in the progression of DCM. We also found chlorogenic acid is effective against hyperglycemia induced pathological alteration both in vitro as well as in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.